How to Trade Leakage for Tamper-Resilience

Daniele Venturi
Joint work with:
Sebastian Faust (Katholieke Universiteit Leuven)
Krzysztof Pietrzak (CWI Amsterdam)

SAPIENZA University of Rome

ICALP 2011 – Zurich, July 6 2011
Cryptography today: provable security
Cryptography today: provable security

1 Define model & security notion
Cryptography today: provable security

1. **Define model & security notion**
 - This is done through a security game involving some
Cryptography today: provable security

1. Define model & security notion
 - This is done through a security game involving some

2. Build cryptoscheme
Cryptography today: provable security

1. Define model & security notion
 - This is done through a security game involving some...

2. Build cryptoscheme

3. Formally prove security: Show that no (efficient) adversary can win the security game.
1 Define model & security notion
 - This is done through a security game involving some

2 Build cryptoscheme

3 Formally prove security: Show that no (efficient) adversary can win the security game
 - Often a too strong statement, as it e.g. implies $P \neq NP$ 😞
Cryptography today: provable security

1. Define model & security notion
 - This is done through a security game involving some

2. Build cryptoscheme

3. Formally prove security: Show that no (efficient) adversary can win the security game
 - Often a too strong statement, as it e.g. implies $P \neq NP$
 - We can prove conditional result

D. Venturi (SAPIENZA University of Rome)
Time to relax?

Security proof implies:
Time to relax?

Security proof implies:
- Security against all known and future attacks
Time to relax?

Security proof implies:
- Security against all known and future attacks
- Can we go home and relax?
Time to relax?

Security proof implies:
- Security against all known and future attacks
- Can we go home and relax?

- Provably secure systems get broken in practice!
Time to relax?

Security proof implies:
- Security against all known and future attacks
- Can we go home and relax?

- Provably secure systems get broken in practice!
- So what’s wrong? Error in proof? Wrong assumption?
Time to relax?

Security proof implies:
- Security against all known and future attacks
- Can we go home and relax?

- Provably secure systems get broken in practice!
- So what’s wrong? Error in proof? Wrong assumption?

D. Venturi (SAPIENZA University of Rome)
Failure of the black-box model

A beautiful theory

- public parameters
- secret state

Adversary

Cryptosystem

Security proofs usually rely on the black-box model
A beautiful theory

- Security proofs usually rely on the **black-box model**
- has only **black-box** access to the cryptosystem
A beautiful theory

Security proofs usually rely on the black-box model

- has only black-box access to the cryptosystem
 - he can specify an input X
A beautiful theory

Security proofs usually rely on the black-box model

- has only black-box access to the cryptosystem
 - he can specify an input X
 - and gets the corresponding output Y
Failure of the black-box model

A beautiful theory

Security proofs usually rely on the **black-box model**

- has only **black-box** access to the cryptosystem
 - he can specify an input X
 - and gets the corresponding output Y
 - the computations within the box stay secret
The cruel reality!

public parameters

secret state
The cruel reality!

- In the real world the black box is actually a physical device
The cruel reality!

- In the real world the black box is actually a **physical device**

- Passive **can apply side-channel attacks**: e.g. measuring time,
In the real world the black box is actually a physical device.

Passive can apply side-channel attacks: e.g. measuring time, sound,
The cruel reality!

- In the real world the black box is actually a physical device.
- Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working.
The cruel reality!

- In the real world the black box is actually a physical device.
- Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working.
 - This results in a leakage Λ about the secret state. Even partial leakage suffices to break the cryptosystem [Kocher96].
The cruel reality!

- In the real world the black box is actually a **physical device**
- Passive 🤡 can apply **side-channel attacks**: e.g. measuring time, sound, heat while the crypto-device is working
- Active 🤡 can apply **tampering attacks**: e.g. expose it to UV radiation,
The cruel reality!

In the real world the black box is actually a physical device.

Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working.

Active can apply tampering attacks: e.g. expose it to UV radiation, heating up the device.
The cruel reality!

- In the real world the black box is actually a physical device.
- Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working.
- Active can apply tampering attacks: e.g. expose it to UV radiation, heating up the device.
 - The modified output can completely expose the secrets stored in the device [BDL00].
A general question
A general question

Question:
Consider any Boolean circuit C.
Question:

Consider any Boolean circuit C.

C is a directed acyclic graph:
vertices \leftrightarrow gates, edges \leftrightarrow wires
A general question

Question:
Consider any Boolean circuit C.

- C is a directed acyclic graph: vertices \leftrightarrow gates, edges \leftrightarrow wires
- C can be **stateful**: input X_i and memory M_i are used to produce output Y_i and new state M_{i+1}
A general question

Question:
Consider any Boolean circuit C.

- C is a directed acyclic graph: vertices \leftrightarrow gates, edges \leftrightarrow wires
- C can be stateful: input X_i and memory M_i are used to produce output Y_i and new state M_{i+1}
- C can be randomized
A general question

Question:
Consider any Boolean circuit C. Is it possible to formally prove that C is secure against an (as large as possible) class of fault attacks?

- C is a directed acyclic graph: vertices \Leftrightarrow gates, edges \Leftrightarrow wires
- C can be **stateful**: input X_i and memory M_i are used to produce output Y_i and **new** state M_{i+1}
- C can be **randomized**
Compilers

A possible solution using the notion of circuit compiler:
Compilers

A possible solution using the notion of **circuit compiler**:

- Transform C in another circuit \hat{C}, in such a way that tampering in \hat{C} is detected with high probability.
Compilers

A possible solution using the notion of circuit compiler:

- Transform C in another circuit \hat{C}, in such a way that tampering in \hat{C} is detected with high probability.
A possible solution using the notion of circuit compiler:

- Transform C in another circuit \hat{C}, in such a way that tampering in \hat{C} is detected with high probability.
A possible solution using the notion of circuit compiler:

- Transform C in another circuit \hat{C}, in such a way that tampering in \hat{C} is detected with high probability

Φ is functionality preserving: C with initial state M_0 and \hat{C} with initial state \hat{M}_0 result in an identical output distribution.
The “real” world

Consider a **computationally unbounded** (∞, δ)-adversary tampering **adaptively** with \hat{C} for many rounds.
The “real” world

- Consider a **computationally unbounded** \((\infty, \delta)\)-adversary tampering **adaptively** with \(\hat{C}\) for many rounds.

- In each round 🤡 can attack **an unbounded number of wires**.
The “real” world

- Consider a \textbf{computationally unbounded} \((\infty, \delta)-\text{adversary}\) tampering \textbf{adaptively} with \(\hat{C}\) for many rounds

- In each round \(\Devil\) can attack \textbf{an unbounded number of wires}
 - For every wire he can choose between
The “real” world

- Consider a **computationally unbounded** \((\infty, \delta)\)-adversary tampering **adaptively** with \(\hat{C}\) for many rounds.
- In each round 🖖 can attack **an unbounded number of wires**.
 - For every wire he can choose between 🛠 (i.e. set a wire to 1),
The “real” world

- Consider a computationally unbounded (∞, δ)-adversary tampering adaptively with \hat{C} for many rounds.

- In each round an unbounded number of wires can be attacked.
 - For every wire, he can choose between setting a wire to 1 (i.e. set a wire to 1), and resetting a wire to 0 (i.e. reset a wire to 0).
The "real" world

- Consider a computationally unbounded \((\infty, \delta)\)-adversary tampering adaptively with \(\widehat{\mathcal{C}}\) for many rounds.

- In each round, can attack an unbounded number of wires.
 - For every wire, he can choose between (i.e. set a wire to 1), (i.e. reset a wire to 0) and (i.e. flip the value of a wire).
The “real” world

Consider a **computationally unbounded** \((\infty, \delta)\)-adversary tampering **adaptively** with \(\hat{C}\) for many rounds.

In each round 👹 can attack **an unbounded number of wires**

- For every wire he can choose between ⚒ (i.e. set a wire to 1), ⚒ (i.e. reset a wire to 0) and ✂ (i.e. flip the value of a wire)

Noisy Tampering: each attack fails independently with some probability \(0 < \delta \leq 1\)
Consider a **computationally unbounded** \((\infty, \delta)\)-adversary tampering **adaptively** with \(\hat{C}\) for many rounds.

In each round can attack **an unbounded number of wires**

- For every wire he can choose between (i.e. **set** a wire to 1), (i.e. **reset** a wire to 0) and (i.e. **flip** the value of a wire)

Noisy Tampering: each attack fails **independently** with some probability \(0 < \delta \leq 1\)

- Faults can be either **permanent** or **transient**
The “real” world

- Consider a computationally unbounded \((\infty, \delta)\)-adversary tampering adaptively with \(\hat{C}\) for many rounds.

- In each round you can attack an unbounded number of wires.
 - For every wire, you can choose between \(\blacklozenge\) (i.e. set a wire to 1), \(\blacklozenge\) (i.e. reset a wire to 0) and \(\blacklozenge\) (i.e. flip the value of a wire).

- Noisy Tampering: each attack fails independently with some probability \(0 < \delta \leq 1\).
 - Faults can be either permanent or transient.

- Finally you gets the output of \(\hat{C}\) when tampering is applied to the computation.
(t, 0)-tamper resilience of [IPSW06]
\((t, 0)\)-tamper resilience of [IPSW06]
$(t, 0)$-tamper resilience of [IPSW06]
\((t, 0)\)-tamper resilience of [IPSW06]
(t, 0)-tamper resilience of [IPSW06]

Apply up to t faults
$(t,0)$-tamper resilience of [IPSW06]
(t, 0)-tamper resilience of [IPSW06]

Apply up to t faults
\((t, 0)\)-tamper resilience of [IPSW06]

\[\Phi \]

Black box access

Apply up to \(t\) faults
$(t, 0)$-tamper resilience of [IPSW06]
\((t, 0)\)-tamper resilience of [IPSW06]
\((t, 0)\)-tamper resilience of [IPSW06]

\[\Phi \]

\[
\begin{array}{c}
\text{Black box access} \\
\end{array}
\]

\[
\begin{array}{c}
\text{Apply up to } t \text{ faults} \\
\end{array}
\]

\[
\begin{array}{c}
\text{Indistinguishable} \\
\end{array}
\]

Note: faults are error-free, i.e. \(\delta = 0 \)
Result of [IPSW06]

- **Theorem**: For integer t and security parameter k, there exists a compiler that is $(t, 0)$-tamper resilient.
Result of [IPSW06]

- **Theorem**: For integer t and security parameter k, there exists a compiler that is $(t, 0)$-tamper resilient
- Proof based on the following assumption
Result of [IPSW06]

- **Theorem**: For integer t and security parameter k, there exists a compiler that is $(t, 0)$-tamper resilient.

- Proof based on the following assumption

Axiom

There exist small, stateless and computation-independent tamper-proof "gadgets" computing with simple encodings.
Result of [IPSW06]

- **Theorem**: For integer t and security parameter k, there exists a compiler that is $(t, 0)$-tamper resilient.
- Proof based on the following assumption:

Axiom

There exist small, stateless and computation-independent tamper-proof “gadgets” computing with simple encodings.

- Inefficient compiler. To achieve indistinguishability of 2^{-k}.
Result of [IPSW06]

- **Theorem**: For integer t and security parameter k, there exists a compiler that is $(t, 0)$-tamper resilient
- Proof based on the following assumption

Axiom

There exist small, stateless and computation-independent tamper-proof “gadgets” computing with simple encodings

- **Inefficient** compiler. To achieve indistinguishability of 2^{-k}
 - Blow-up is $O(k^3 t)$
Result of [IPSW06]

- **Theorem:** For integer t and security parameter k, there exists a compiler that is $(t,0)$-tamper resilient.
- Proof based on the following assumption

Axiom

There exist **small**, **stateless** and **computation-independent** tamper-proof “gadgets” computing with simple encodings.

- **Inefficient** compiler. To achieve indistinguishability of 2^{-k}
 - Blow-up is $O(k^3 t)$
 - Requires $O(k^2)$ bits of fresh randomness **per invocation**
Rest of this talk

Our paradigm: trading leakage for efficiency
Rest of this talk

1. Our paradigm: trading leakage for efficiency
2. Description of our compiler
Rest of this talk

1. Our paradigm: trading leakage for efficiency
2. Description of our compiler
3. Proof sketch
Rest of this talk

1. Our paradigm: trading leakage for efficiency
2. Description of our compiler
3. Proof sketch
4. Conclusions and perspective
(\infty, \delta, \lambda)-tamper resilience
(\infty, \delta, \lambda)-tamper resilience
$(\infty, \delta, \lambda)$-tamper resilience

\[
\Phi \Rightarrow \nabla
\]

D. Venturi (SAPIENZA University of Rome)
Trading Leakage for Tamper-Resilience

Our Result

$(\infty, \delta, \lambda)$-tamper resilience

Tamper-Proof Circuits
Trading Leakage for Tamper-Resilience

Our Result

\((\infty, \delta, \lambda)\)-tamper resilience

Apply unbounded \# faults
Trading Leakage for Tamper-Resilience

\((\infty, \delta, \lambda)\)-tamper resilience

\[\Phi\]

Apply unbounded \# faults
Our Result

\((\infty, \delta, \lambda)\)-tamper resilience

Apply unbounded \# faults
Trading Leakage for Tamper-Resilience

Our Result

\((\infty, \delta, \lambda)\)-tamper resilience

Apply unbounded \# faults
(∞, δ, λ)-tamper resilience

\[\Phi \]

\[\Lambda = f(M_0) \]

Apply unbounded # faults
Trading Leakage for Tamper-Resilience

Our Result

\((\infty, \delta, [\lambda])\)-tamper resilience

\[\Phi \]

Apply unbounded \# faults

\[|\Lambda| = \lambda \]

\[\Lambda = f(M_0) \]
Trading Leakage for Tamper-Resilience

Our Result

\((\infty, \delta, \lambda)-\text{tamper resilience}\)

\[\Phi \]

Black box access

Apply unbounded \# faults

\[|\Lambda| = \lambda \]

\[\Lambda = f(M_0) \]
(∞, δ, λ)-tamper resilience

\[\Phi \Rightarrow \]

Black box access

Apply unbounded ≠ faults

|Λ| = λ

\[\Lambda = f(M_0) \]

\[\Phi \]

\[f \]
Trading Leakage for Tamper-Resilience

Our Result

\((\infty, \delta, \lambda)\)-tamper resilience

\[\Phi \]

Black box access

Apply unbounded \# faults

\[|\Lambda| = \lambda \]

\[\Lambda = f(M_0) \]

Indistinguishable
Our result

Theorem: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log|M_0|))$-tamper resilient
Theorem: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log|M_0|))$-tamper resilient.

Comparison with [IPSW06]:
Our result

- **Theorem:** Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$-tamper resilient.

- **Comparison with [IPSW06]:**
 - We rely on the **same axiom** and require similar tamper-proof components.
Our result

- **Theorem:** Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log|M_0|))$-tamper resilient.

- **Comparison with [IPSW06]:**
 - We rely on the **same axiom** and require similar tamper-proof components.
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable).
Our result

Theorem: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log|M_0|))$-tamper resilient.

Comparison with [IPSW06]:
- We rely on the same axiom and require similar tamper-proof components.
- $t = \infty$ but $\delta > 0$ (the two models are incomparable).
- Blow-up is only $O(k)$ 😊.
Our Result

- **Theorem:** Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$-tamper resilient.

- **Comparison with [IPSW06]:**
 - We rely on the same axiom and require similar tamper-proof components.
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable).
 - Blow-up is only $O(k)$.
 - No randomness needed at run-time.
Our result

- **Theorem**: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log|M_0|))$-tamper resilient.

- **Comparison with [IPSW06]**:
 - We rely on the same axiom and require similar tamper-proof components.
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable).
 - Blow-up is only $O(k)$ 🎉
 - No randomness needed at run-time 😊

- **Corollary**: Any scheme tolerating a logarithmic amount of leakage on the secret key can be implemented in a tamper-resilient way.
Our result

- **Theorem:** Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log|M_0|))$-tamper resilient.

- **Comparison with [IPSW06]:**
 - We rely on the same axiom and require similar tamper-proof components.
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable).
 - Blow-up is only $O(k)$.
 - No randomness needed at run-time.

- **Corollary:** Any scheme tolerating a logarithmic amount of leakage on the secret key can be implemented in a tamper-resilient way.
 - Any Sig and PKE (security loss exponential in leakage).
Our result

Theorem: Let \(\delta < 1/2 \) and \(k \) be a security parameter. There exists a compiler that is \((\infty, \delta, O(\log|M_0|)))\)-tamper resilient.

Comparison with [IPSW06]:
- We rely on the same axiom and require similar tamper-proof components.
- \(t = \infty \) but \(\delta > 0 \) (the two models are incomparable).
- Blow-up is only \(O(k) \)
- No randomness needed at run-time

Corollary: Any scheme tolerating a logarithmic amount of leakage on the secret key can be implemented in a tamper-resilient way.
- Any Sig and PKE (security loss exponential in leakage)
- Positive results from leakage-resilient cryptography
What do we want from \hat{C}?
What do we want from \hat{C}?
What do we want from \(\hat{C} \)?
What do we want from \hat{C}?
What do we want from $\hat{\mathcal{C}}$?
What do we want from \hat{C}?

- Simulation is hard because
What do we want from \hat{C}?

Simulation is hard because
- Y_i can’t be directly forwarded
What do we want from \hat{C}?

Simulation is hard because
- Y_i can’t be directly forwarded
- M_i is unknown
What do we want from \widehat{C}?

- Simulation is hard because
 - Y_i can’t be directly forwarded
 - M_i is unknown

Idea: Guarantee that \widehat{C} outputs
What do we want from \(\hat{C} \)?

- Simulation is hard because
 - \(Y_i \) can’t be directly forwarded
 - \(M_i \) is unknown
- **Idea:** Guarantee that \(\hat{C} \) outputs
 - \(Y_i \) when no tampering happens (easy to simulate)
What do we want from \hat{C}?

- Simulation is hard because
 - Y_i can’t be directly forwarded
 - M_i is unknown

 Idea: Guarantee that \hat{C} outputs
 - Y_i when no tampering happens (easy to simulate)
 - Constant 0 if tampering occurs (we can reply with 0)
What do we want from \widehat{C}?

- Simulation is hard because
 - Y_i can’t be directly forwarded
 - M_i is unknown

- **Idea**: Guarantee that \widehat{C} outputs
 - Y_i when no tampering happens (easy to simulate)
 - **Constant** 0 if tampering occurs (we can reply with 0)

- **Avoid**: Tampering successfully without being noticed
Big picture of $\widehat{C} (k = 3)$

\[\widehat{C}_{r_1, r_1'}, \widehat{C}_{r_2, r_2'}, \widehat{C}_{r_3, r_3'} \]

- Encoded State \tilde{M}_i
- Public input X_i
- New encoded state \tilde{M}_{i+1}
- Public output Y_i

D. Venturi (SAPIENZA University of Rome)
The core (red part)
The core of \hat{C} consists of k sub-circuits (same topology as C')
The core (red part)

- The core of \hat{C} consists of k sub-circuits (same topology as C')
- A wire $w \in \{0, 1\} \Rightarrow \text{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
The core (red part)

- The core of \hat{C} consists of k sub-circuits (same topology as C')
 - A wire $w \in \{0, 1\} \Rightarrow \text{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
 - NAND \Rightarrow NAND (see below)
The core (red part)

The core of \hat{C} consists of k sub-circuits (same topology as C')

- A wire $w \in \{0, 1\} \Rightarrow \MMC(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
- NAND \Rightarrow NAND (see below)
- Valid output of core: k copies of $\MMC(w)$, $\forall w \in \text{output of } C$ $(2k$ bits of randomness in total)
The core (red part)

- The core of \hat{C} consists of k sub-circuits (same topology as C')
 - A wire $w \in \{0, 1\} \Rightarrow \text{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
 - NAND \Rightarrow NAND (see below)
 - Valid output of core: k copies of MMC(w), $\forall w \in$ output of C
 (2k bits of randomness in total)

- Computes with MMC
The core (red part)

- The core of \hat{C} consists of k sub-circuits (**same topology as** C')
 - A wire $w \in \{0, 1\} \Rightarrow MMC(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
 - NAND \Rightarrow NAND (see below)
 - **Valid** output of core: k copies of MMC(w), $\forall w \in$ output of C
 (2k bits of randomness **in total**)

- Computes with MMC
- **Invalid** inputs generate 0^4
The core (red part)

- The core of \hat{C} consists of k sub-circuits (same topology as C)
- A wire $w \in \{0, 1\} \Rightarrow MMC(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
- NAND \Rightarrow NAND (see below)
- Valid output of core: k copies of $MMC(w)$, $\forall w \in$ output of C
 (2k bits of randomness in total)

Computes with MMC
- Invalid inputs generate 0^4
- Assumed tamper-proof
Why MMC?
Why MMC?

Say output is 0, i.e. all wires are 0 and wants to change it to 1.
Why MMC?

- Say output is 0, i.e. all wires are 0 and the devil wants to change it to 1.
- Just set every wire to 1: Prob. of success increases with # of wires!
Why MMC?

- Say output is 0, i.e. all wires are 0 and 🥴 wants to change it to 1
- Just set every wire to 1: Prob. of success increases with # of wires!
- MMC prevents this attack: error will propagate!
Why MMC?

- Say output is 0, i.e. all wires are 0 and 🖖 wants to change it to 1
- Just set every wire to 1: Prob. of success increases with # of wires!
- MMC prevents this attack: error will propagate!
- **Composition lemma**: Tampering in a sub-circuit ⇒ output of core will contain invalid encoding w.h.p.
The cascade phase of [IPSW06]

- So changing the output of core will fail, but 👹 can tamper over many rounds!
So changing the output of core will fail, but 🤡 can tamper over many rounds!

- Cascade phase will avoid this
The cascade phase of [IPSW06]

- So changing the output of core will fail, but 🤡 can tamper over many rounds!
- Cascade phase will avoid this
 - Invalid input ⇒ output will encode 0: *self-destruct mechanism*
The cascade phase of [IPSW06]

- So changing the output of core will fail, but 🙅‍♂️ can tamper over many rounds!
- Cascade phase will avoid this
 - Invalid input ⇒ output will encode 0: self-destruct mechanism
 - Tamper-proof gadgets of linear size (but same for every circuit)
Why tamper-proof gadgets?

- We don’t know how to prove without them 😞
Why tamper-proof gadgets?

- We don’t know how to prove without them 😐

- Assume 😈 can tamper inside the gadgets
Why tamper-proof gadgets?

- We don’t know how to prove without them 😞

Assume 😈 can tamper inside the gadgets
- Tampering with the input induces some distribution
Why tamper-proof gadgets?

- We don’t know how to prove without them 😊

Assume 🙈 can tamper inside the gadgets
- Tampering with the input induces some distribution
- The deeper we go the “worse” this distribution can be made
Why tamper-proof gadgets?

- We don’t know how to prove without them 😊

Assume 🤡 can tamper inside the gadgets
 - Tampering with the input induces some distribution
 - The deeper we go the “worse” this distribution can be made
 - Open question: find a construction for the NAND such that the bias cannot be increased
Proof sketch (1/2)

C

X_i, Y_i

X_i, Y'_i
Proof sketch (1/2)

If \(\hat{C} \) tampers with \(\hat{C} \) the following can happen
Proof sketch (1/2)

If the attacker tampers with \hat{C} the following can happen:

1. Tampering changes the encoding of w to the encoding of $1 - w$
Trading Leakage for Tamper-Resilience

Proof sketch (1/2)

If tampers with \hat{C} the following can happen:

- Tampering changes encoding of w to encoding of $1 - w$
- Cannot be simulated
Proof sketch (1/2)

If \(\hat{C} \) tampers with the following can happen:

1. Tampering changes encoding of \(w \) to encoding of \(1 - w \)
 - **Cannot** be simulated
 - We show it happens with negligible probability
Proof sketch (1/2)

If the adversary tamper with the circuit \(\hat{C} \), the following can happen:

1. Tampering changes encoding of \(w \) to encoding of \(1 - w \)
 - Cannot be simulated
 - We show it happens with negligible probability

2. No tampering: use black box access for simulation
Proof sketch (1/2)

If the adversary tampers with \widehat{C} the following can happen:

1. Tampering changes encoding of w to encoding of $1 - w$
 - Cannot be simulated
 - We show it happens with negligible probability

2. No tampering: use black box access for simulation

3. Tampering detected: output 0
Proof sketch (2/2)

However, does not know when this will happen.
Proof sketch (2/2)

However, does not know when this will happen

Give as advice $\Lambda = f(M_0)$ the exact point of failure
However, does not know when this will happen.

Give as advice \(\Lambda = f(M_0) \) the exact point of failure.

In which invocation...
Proof sketch (2/2)

However does not know when this will happen

Give as advice $\Lambda = f(M_0)$ the exact point of failure

- In which invocation
- At which point of the cascade phase
However, does not know when this will happen.

Give as advice $\Lambda = f(M_0)$ the exact point of failure.

$O(\log |M_0|)$ bits

- In which invocation
- At which point of the cascade phase
Proof sketch (2/2)

However does not know when this will happen.

Give as advice $\Lambda = f(M_0)$ the exact point of failure.

$O(\log |M_0|)$ bits

In which invocation.

At which point of the cascade phase.

Finally, simulation must continue even after self-destruct.
Proof sketch (2/2)

- However, does not know when this will happen.
- Give as advice $\Lambda = f(M_0)$ the exact point of failure.

$O(\log |M_0|)$ bits

- In which invocation.
- At which point of the cascade phase.

- Finally, simulation must continue even after self-destruct.
 - Looks trivial since the state is destroyed, but recall that faults are persistent.
Take-home message

- It is possible to compile any circuit such that it resists an unbounded number of faults
Take-home message

1. It is possible to compile any circuit such that it resists an unbounded number of faults.
2. Trading a small amount of leakage can lead to efficient compilers.
Take-home message

1. It is possible to compile any circuit such that it resists an unbounded number of faults
2. Trading a small amount of leakage can lead to efficient compilers

Where do we go from here?
Take-home message

1. It is possible to compile any circuit such that it resists an unbounded number of faults
2. Trading a small amount of leakage can lead to efficient compilers

Where do we go from here?
- Dependent errors
Take-home message

1. It is possible to compile any circuit such that it resists an unbounded number of faults
2. Trading a small amount of leakage can lead to efficient compilers

Where do we go from here?
- Dependent errors
- Global tampering functions
Take-home message

1. It is possible to compile any circuit such that it resists an unbounded number of faults
2. Trading a small amount of leakage can lead to efficient compilers

Where do we go from here?
- Dependent errors
- Global tampering functions
- Eliminate tamper-proof gadgets
Take-home message

1. It is possible to compile any circuit such that it resists an unbounded number of faults
2. Trading a small amount of leakage can lead to efficient compilers

Where do we go from here?
- Dependent errors
- Global tampering functions
- Eliminate tamper-proof gadgets
- Implementation-independent model
Questions?

THE END!