DATA PRIVACY AND SECURITY

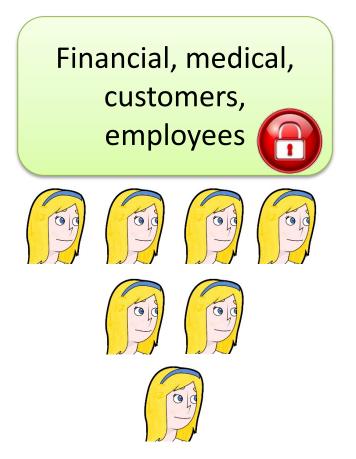
Prof. Daniele Venturi

Master's Degree in Data Science Sapienza University of Rome

Research Center for Cyber Intelligence and information Security

<u>CHAPTER 4:</u> Big Data & Cloud Cryptography

Big Data

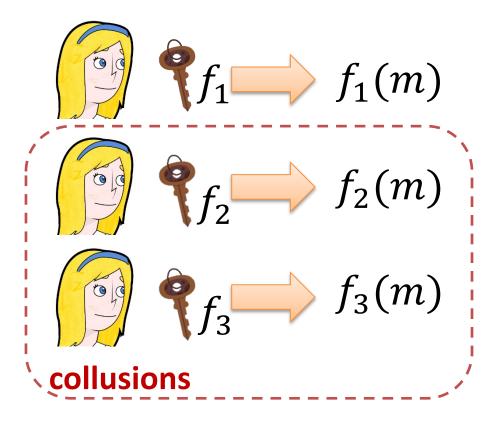


BIG DATA

• Utility + privacy

- Restrict access
- Restrict computation

Functional Encryption (FE)

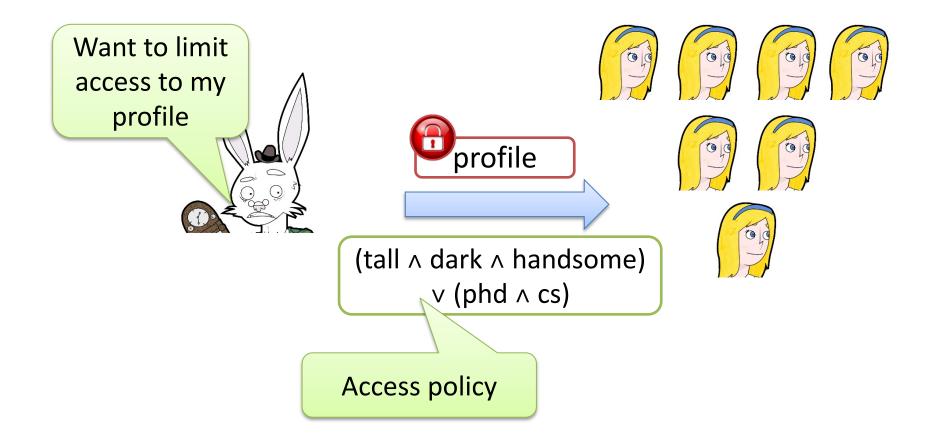


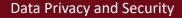
Data Privacy and Security

S SAPIENZA

Big Data & Cloud

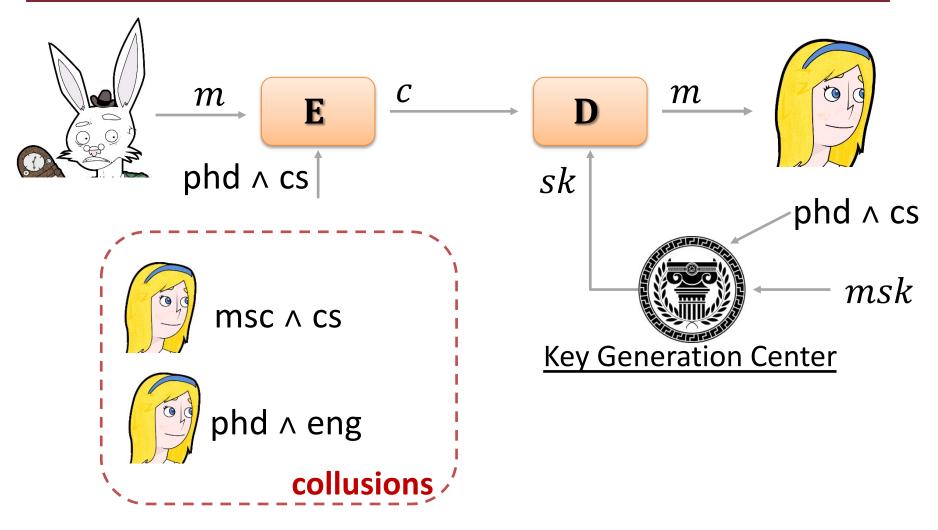
Dating and Big Data





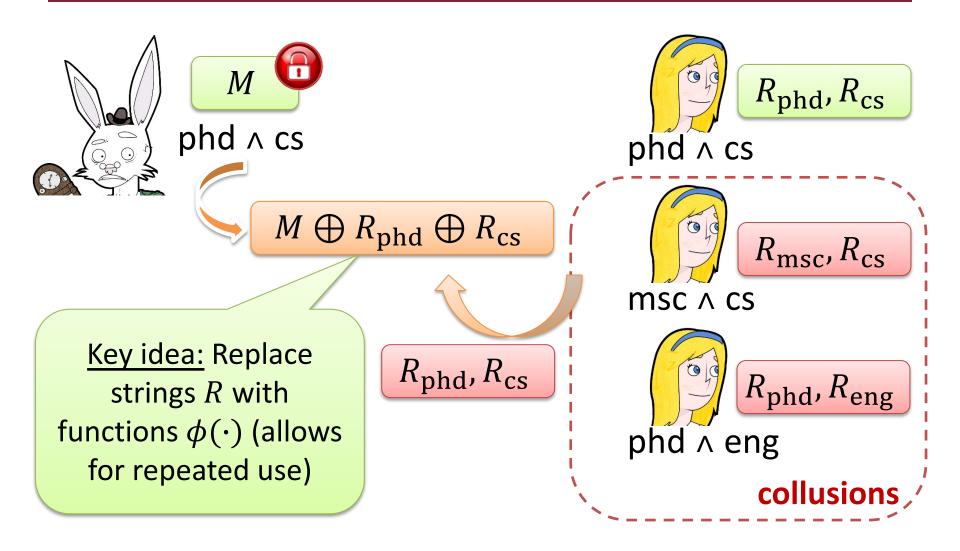
IS SAPIENZA

Attribute-Based Encryption (ABE)



IS SAPIENZA

Mix-and-Match Attacks

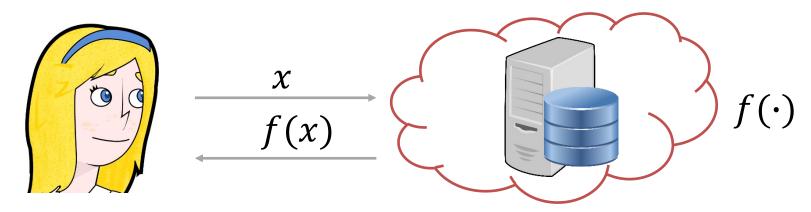


Results on FE and ABE

- Constructions of FE for arbitrary functions currently requires strong assumptions
 - Multi-linear maps
 - Indistinguishability obfuscation
- The situation is much better for ABE
 - Constructions for **arbitrary policies** from LWE
 - Constructions for **arbitrary policies** using pairings

"Cryptographers seldom sleep well" – Silvio Micali

Outsourcing of Computation

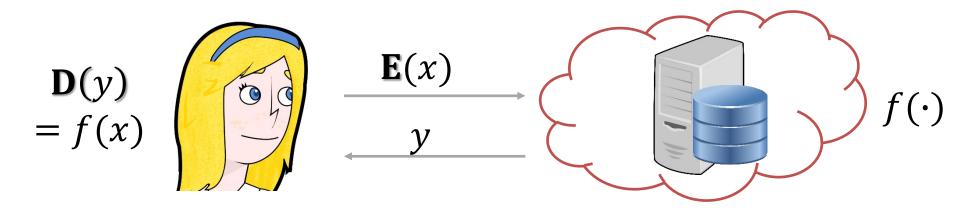


- Email, web search, navigation, social networking, ...
- What about **private** *x*?

Data Privacy and Security

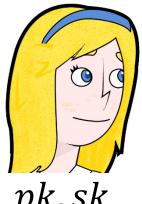
APIFNZA

Outsourcing of Computation - Privately



<u>WISH</u>: Homomorphic evaluation function: $\mathbf{C}: f, \mathbf{E}(x) \rightarrow \mathbf{E}(f(x))$

Fully Homomorphic Encryption



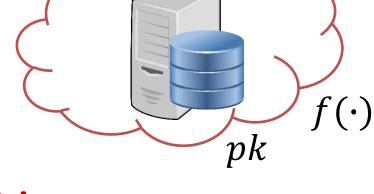
$$c = \mathbf{E}(pk, x)$$

 $= \mathbf{C}(pk, f, c)$

pk, sk

Correctness:

 $\mathbf{D}(sk, y) = f(x)$



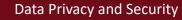
Privacy: $\mathbf{E}(pk, x) \approx \mathbf{E}(pk, 0)$

FHE = Correctness \forall efficient f = Correctness for universal set

Levelled FHE: Bounded depth *f*

11

NAND



Trivial FHE?

- Let (E, D) be any PKE scheme
- Define FHE (E', D', C'):
 - E' identical to E

$$-\mathbf{C}'(pk,f,c) = (f,c)$$

$$-\mathbf{D}'(sk,c) = f(\mathbf{D}(c))$$

<u>Compact FHE:</u> \exists **global bound** on ciphertext length and decryption time

A Paradox (And its Resolution)

$$c_{1} = \mathbf{E}(pk, x_{1})$$

$$c_{2} = \mathbf{E}(pk, x_{2})$$

$$c_{3} = \mathbf{E}(pk, x_{3})$$

$$f(x_{1}, x_{2}, x_{3}) = \begin{cases} x_{2} \text{ if } x_{1} = 0 \\ x_{3} \text{ if } x_{1} = 1 \end{cases}$$

$$\mathbf{E}(pk, x_{2})$$

$$\mathbf{E}(pk, x_{2})$$

$$\mathbf{AH! So}$$

$$x_{1} = 0$$

- But remember that encryption is **randomized**!
- Output of evaluation algorithm will look as a fresh and random ciphertext

Eigenvectors Method (Basic Idea)

- Let C_1 and C_2 be matrixes for **eigenvector** \vec{s} , and **eigenvalues** x_1, x_2 (i.e., $\vec{s} \times C_i = x_i \cdot \vec{s}$) $-C_1 + C_2$ has eigenvalue $x_1 + x_2$ w.r.t. \vec{s}
 - $-C_1 \times C_2$ has eigenvalue $x_1 \cdot x_2$ w.r.t. \vec{s}
- Idea (GSW): Let C be the ciphertext, s be the secret key and x be the plaintext (say over Z_q)

– Useful to think of
$$\mathbb{Z}_q = [-q/2, q/2)$$

- Homomorphism for **addition/multiplication**
- But **insecure**: Easy to compute eigenvalues

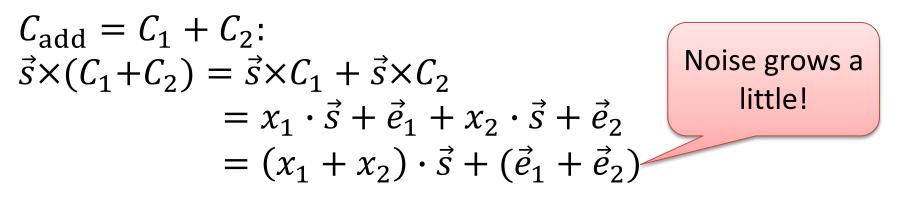
Approximate Eigenvectors Method

• Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$

– "Decryptable" as long as $\|\vec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2 \\ \|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q$$

<u>Goal</u>: Define homomorphic operations



15

Approximate Eigenvectors Method

• Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$

– "Decryptable" as long as $\|\vec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2 \\ \|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q$$

Goal: Define homomorphic operations

$$C_{\text{mult}} = C_1 \times C_2:$$

$$\vec{s} \times (C_1 \times C_2) = (x_1 \cdot \vec{s} + \vec{e}_1) \times C_2$$

$$= x_1 \cdot (x_2 \cdot \vec{s} + \vec{e}_2) + \vec{e}_1 \times C_2$$

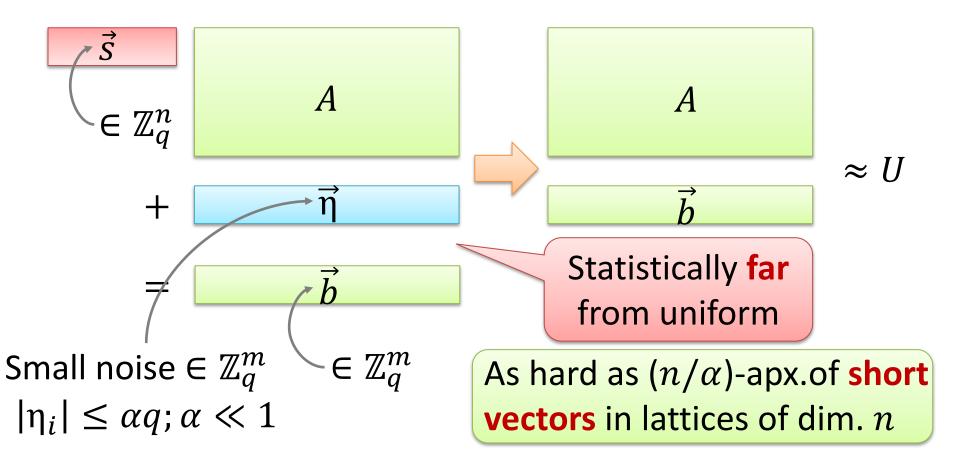
$$= x_1 \cdot x_2 \cdot \vec{s} + (x_1 \cdot \vec{e}_2 + \vec{e}_1 \times C_2)$$

Noise grows!
Needs to be
small!

16

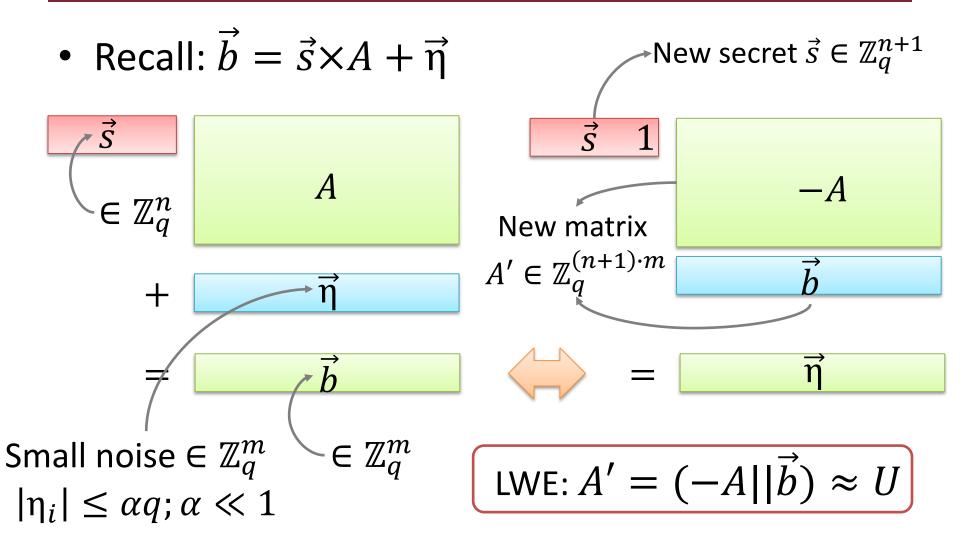
Learning with Errors (LWE)

• Random **noisy** linear equations \approx uniform



Sapifnza

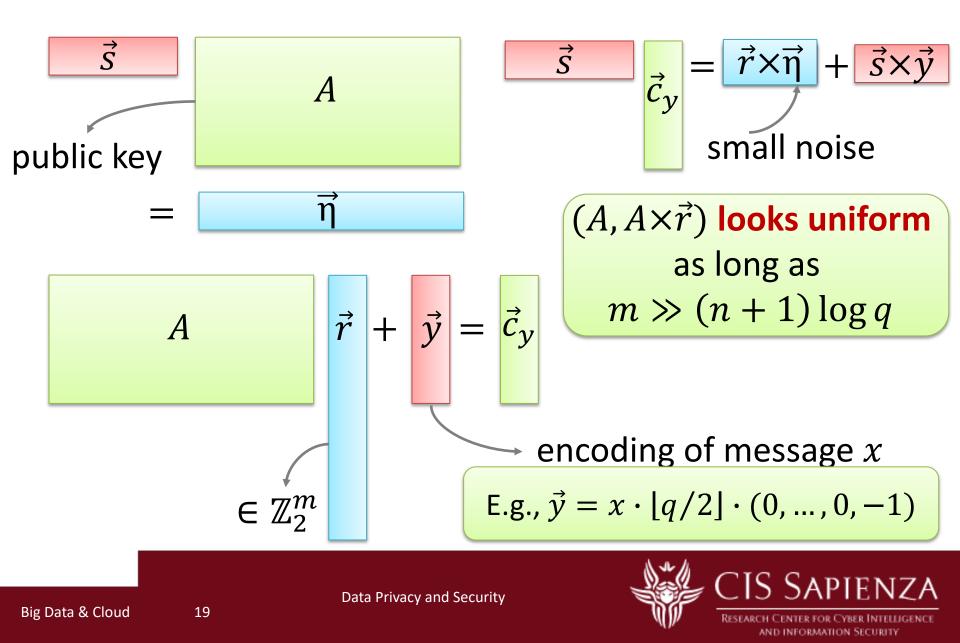
LWE – Rearranging Notation



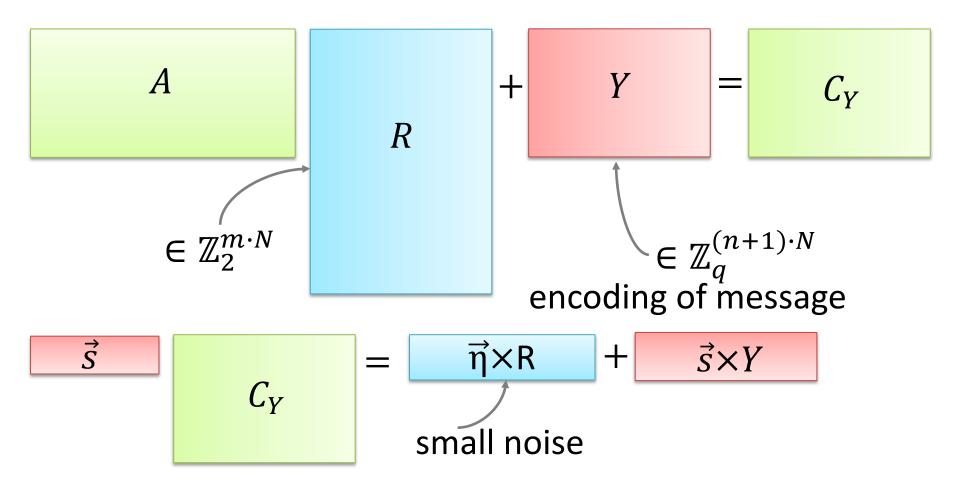
S Sapienza

18

PKE from LWE



PKE from LWE – Matrix Version



Shrinking Gadgets

• Write entries in C using **binary decomposition**

$$C = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} \pmod{8} \xrightarrow{\text{yields}} \text{bits}(C) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \pmod{8}$$

$$\underbrace{\text{small entries!}}_{k \in N = k[\log q]} (\mod 8)$$

$$\Rightarrow \vec{s} \times C = \vec{s} \times G \times G^{-1}(C)$$

$$k \begin{bmatrix} 2^{N-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C) = C$$

$$d = \begin{bmatrix} 2^{N-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C) = C$$

$$d = \begin{bmatrix} 2^{n-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C) = C$$

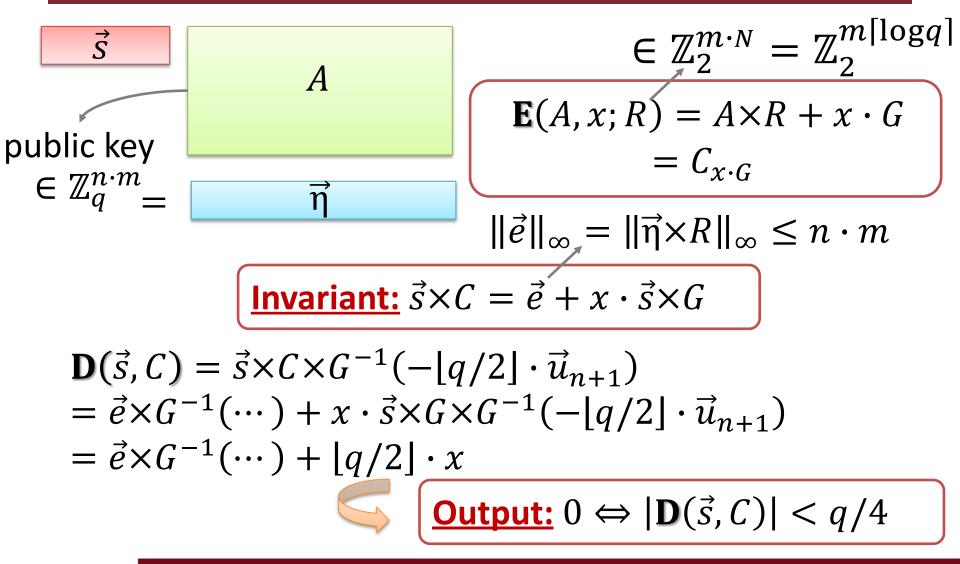
$$d = \begin{bmatrix} 2^{n-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C) = C$$

$$d = \begin{bmatrix} 2^{n-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C) = C$$

N *II*

AND INFORMATION SECURITY

The GSW Scheme



The GSW Scheme – Homomorphism

Invariant:
$$\vec{s} \times C = \vec{e} + x \cdot \vec{s} \times G$$

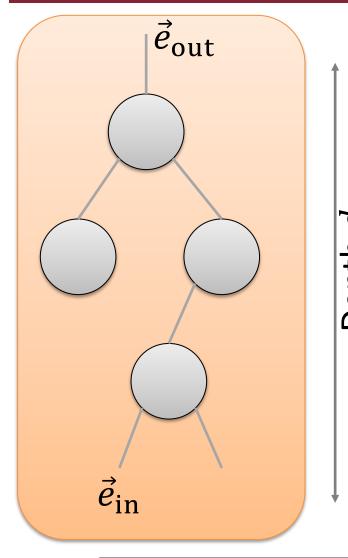
$$C_{\text{mult}} = C_1 \times G^{-1}(C_2)$$

$$\vec{s} \times C_1 \times G^{-1}(C_2) = (\vec{e}_1 + x_1 \cdot \vec{s} \times G) \cdot G^{-1}(C_2)$$

= $\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times G \times G^{-1}(C_2)$
= $\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times C_2$
= $\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot (\vec{e}_2 + x_2 \cdot \vec{s} \times G)$
= $(\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{e}_2) + x_1 x_2 \cdot \vec{s} \times G$
= $\vec{e}_{\text{mult}} + x_1 x_2 \cdot \vec{s} \times G$

$\|\vec{e}_{\text{mult}}\|_{\infty} \le N \cdot \|\vec{e}_1\|_{\infty} + \|\vec{e}_2\|_{\infty} \le (N+1) \cdot \max\{\|\vec{e}_1\|, \|\vec{e}_2\|\}$

Homomorphic Circuit Evaluation

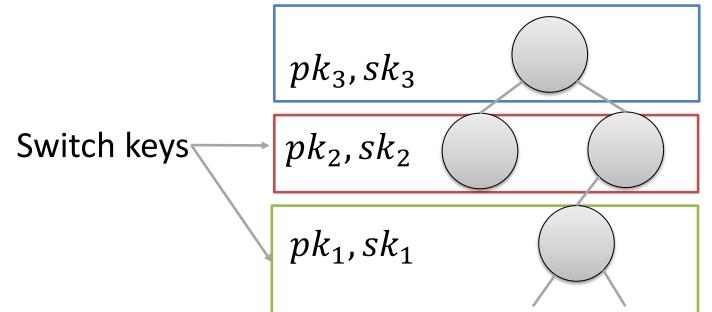


24

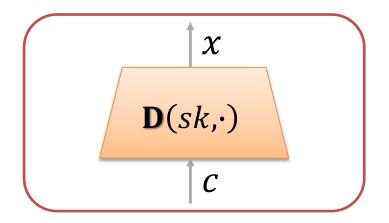
$$\begin{aligned} \|\vec{e}_{out}\|_{\infty} &\leq (N+1)^{d+1}m \cdot \alpha q \\ \frac{\text{Decryptability:}}{n \cdot m \cdot (N+1)^{d+1} < q/4} \\ \text{Security: } m \geq 1 + 2n(2 + \log q) \\ \text{and } q \leq 2^{n^{\epsilon}} (\epsilon < 1) \\ \Rightarrow n^{\epsilon} > 2d \cdot \log n \\ \|\vec{e}_{i+1}\|_{\infty} \leq (N+1)\|\vec{e}_{i}\|_{\infty} \end{aligned}$$
$$\begin{aligned} \|\vec{e}_{i+1}\|_{\infty} \leq m \cdot n = m \cdot \alpha q \end{aligned}$$

Bootstrapping

- Given scheme with bounded homomorphism up to d_{hom}, can we extend its homomorphic capability?
- Idea: Do a few operations, then switch key



How to Switch Keys



$$\begin{array}{c} x \\ \mathbf{D}(\cdot,c) \\ sk \end{array} \equiv h_c(\cdot) \end{array}$$

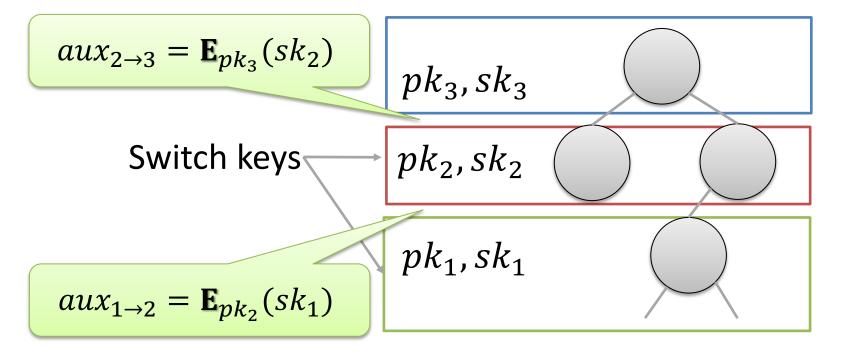
Decryption circuit

$$\mathbf{C}_{pk'}(h_c, aux) = \mathbf{C}_{pk'}\left(h_c, \mathbf{E}_{pk'}(sk)\right)$$
$$= \mathbf{E}_{pk'}(h_c(sk))$$
$$= \mathbf{E}_{pk'}(x)$$

Bootstrapping Theorem

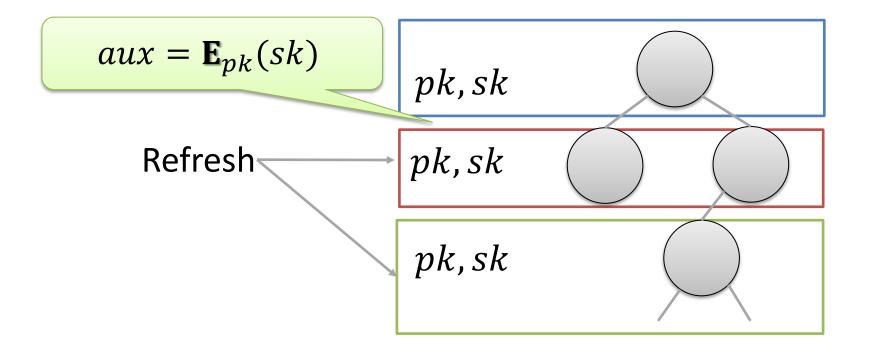
• Homomorphic capacity of output: $d_{\rm hom} - d_{h_c} = d_{\rm hom} - d_{\rm dec}$

– Bootstrapping if $d_{hom} \ge d_{dec} + 1$

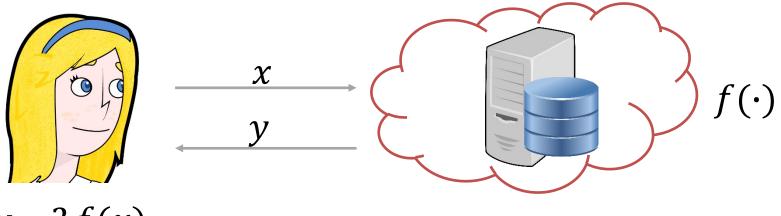


Bootstrapping – Circular Security

- Drawback: Need to generate many keys!
- Alternative: Assume circular security



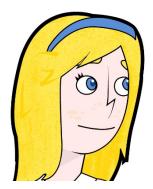
What about Correctness?

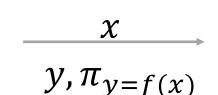


y = ?f(x)

- How to verify correctness of the computation?
 Without re-computing the function from scratch
- Important also from the Cloud's perspective
 Encourage cloud adoption & shed liability

Verifiable Computing



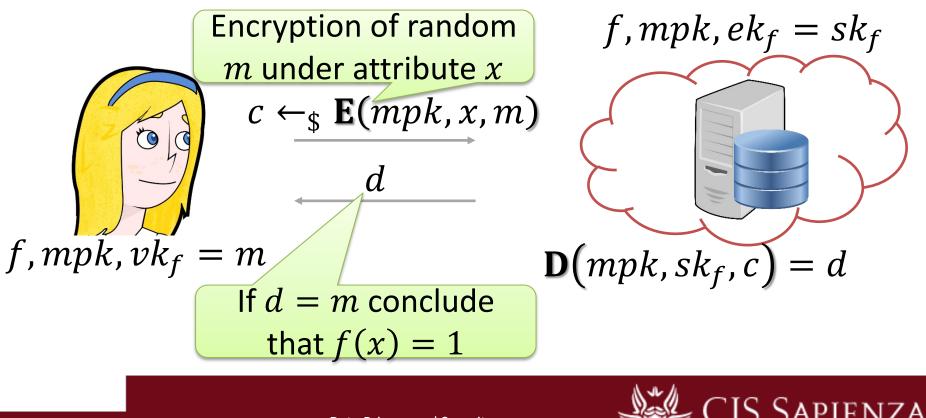


 $(ek_f, vk_f) \leftarrow_{\$} \mathbf{G}(f)$ $\mathbf{V}(vk_f, x, y, \pi) \in \{0, 1\}$ f, ek_f f, ek_f f, ek_f y = f(x) $\pi_y \leftarrow_{\$} \mathbf{P}(ek_f, x, y)$

Efficiency: Alice's effort much less than the effort to compute *f* Soundness: No malicious server can cause Alice to accept $y' \neq f(x)$

Verifiable Computing from ABE (1/3)

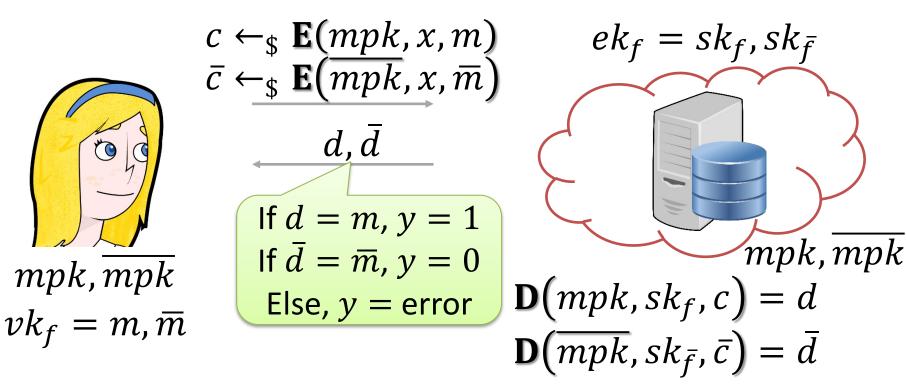
- Assume an ABE supporting policies ${\mathcal F}$
 - Suffices to take $f \in \mathcal{F}$ to be a **formula**
 - We will need ${\mathcal F}$ to be closed under complement



Verifiable Computing from ABE (2/3)

- The above protocol is a VC scheme for checking that f(x) = 1
 - If Alice receives m she is convinced with **no doubt** that f(x) = 1 (except with negligible probability)
 - If Alice receives $d \neq m$, we can't conclude that f(x) = 0 (as the server could just refuse to answer)
 - Hence, the server can cheat only if f(x) = 1
- Idea: Repeat the protocol twice, for $f \in \mathcal{F}$ and for its negation $\bar{f} \in \mathcal{F}$

Verifiable Computing from ABE (3/3)



 For functions with multi-bit output, repeat the above for each function f_i, where f_i(x) outputs the *i*th bit of f(x)

Data Privacy and Security

33

Additional Properties

Public delegatability

- Allow arbitrary parties to submit inputs for delegation
- This is true for any reasonable ABE
- Public verifiability
 - Allow arbitrary parties (and not just the delegator) to verify the correctness of the result produced by the worker
 - Can be achieved by publishing g(m) and $g(\overline{m})$, where $g(\cdot)$ is a OWF

ABE from LWE

- It remains to construct an ABE for **expressive** enough policies $\mathcal F$
- We sketch a scheme for the class \mathcal{F} of all **Boolean circuits**, based on LWE
 - Let P be the policy circuit with depth d and attribute size k
 - Ciphertext size will be poly(k, d)
 - Key size will be $|sk_P| = |P| + poly(k, d)$

Main Idea: Key Homomorphism

$$\mathbf{E}(mpk, x, m)$$

$$\mathbf{E}(pk_P, P(x), m)$$

Data Privacy and Security

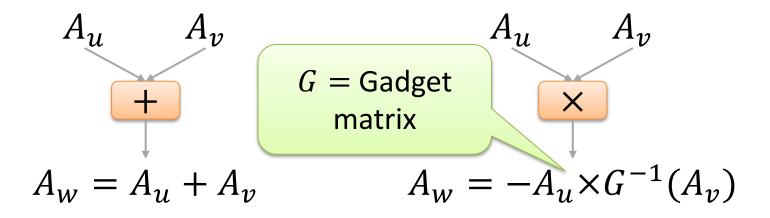
36

Step 1: Transforming keys

$$mpk = (A, A_1, \dots, A_k)$$

LWE matrices

$$pk_P = A_P =$$
"Compute P on A_1, \dots, A_k "

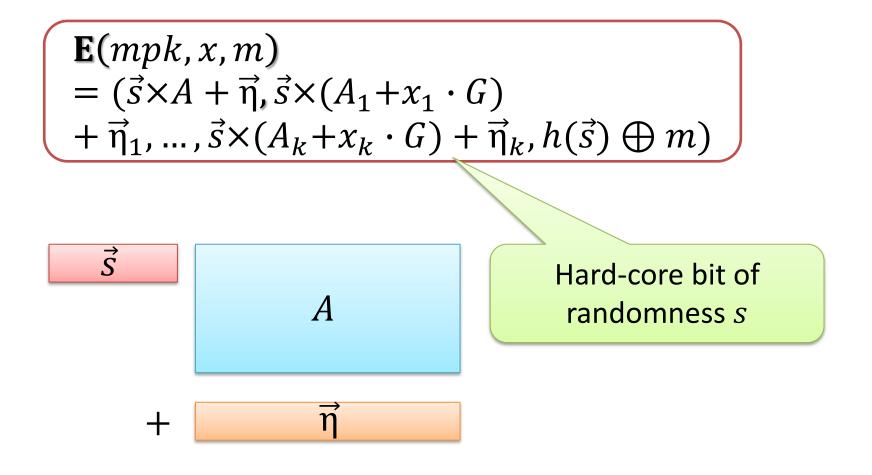


Data Privacy and Security

IS SAPIENZA

37

Step 2: Encryption



Step 3: Transforming Ciphertexts (1/2)

$$\mathbf{E}(mpk, x, m)$$

$$= (\vec{s} \times A + \vec{\eta}, \vec{s} \times (A_1 + x_1 \cdot G)$$

$$+ \vec{\eta}_1, \dots, \vec{s} \times (A_k + x_k \cdot G) + \vec{\eta}_k)$$

$$\vec{c}_u = \vec{s} \times (A_u + x_u \cdot G)$$

$$\vec{c}_v = \vec{s} \times (A_v + x_v \cdot G)$$

$$P, x$$

$$\vec{c}_w = \vec{c}_u + \vec{c}_v = \vec{s} \times ((A_u + A_v) + (x_u + x_v) \cdot G))$$

$$\mathbf{E}(pk_P, P(x), m)$$

$$= (\vec{s} \times A + \vec{\eta}, \vec{s} \times (A_P + P(x) \cdot G) + \vec{\eta}_P)$$

Step 3: Transforming Ciphertexts (2/2)

$$\mathbf{E}(mpk, x, m)$$

$$= (\vec{s} \times A + \vec{\eta}, \vec{s} \times (A_1 + x_1 \cdot G)$$

$$+ \vec{\eta}_1, \dots, \vec{s} \times (A_k + x_k \cdot G) + \vec{\eta}_k)$$

$$\vec{c}_u = \vec{s} \times (A_u + x_u \cdot G)$$

$$\vec{c}_v = \vec{s} \times (A_v + x_v \cdot G)$$

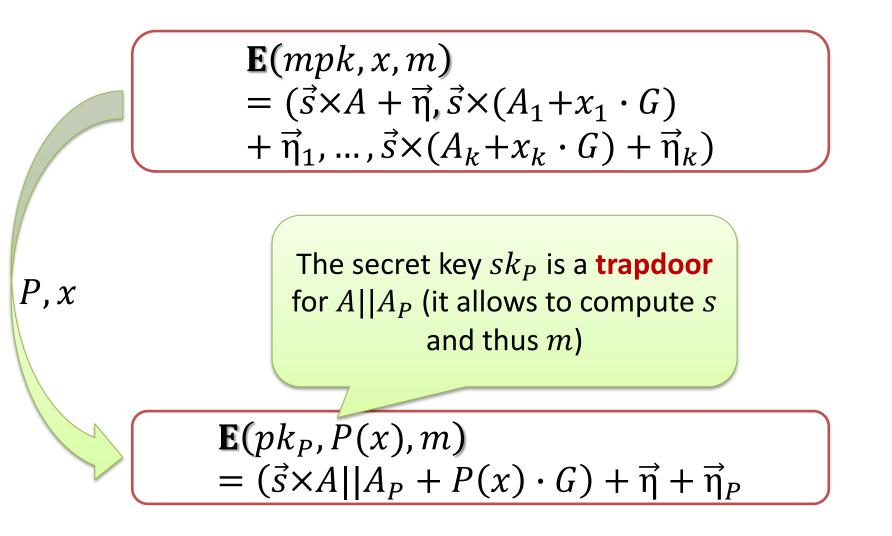
$$\vec{c}_w = -\vec{c}_u \times G^{-1}(A_v) + x_u \cdot c_v$$

$$= -\vec{s} \times (A_u \times G^{-1}(A_v) + x_u \cdot A_v) + x_u \cdot \vec{s} \times (A_v + x_v \cdot G)$$

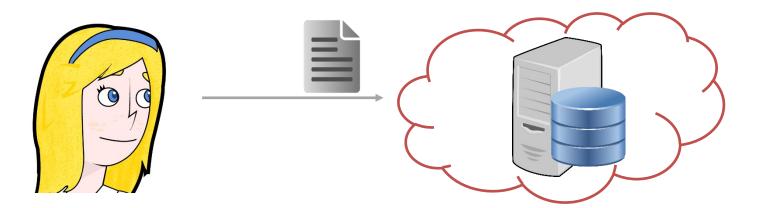
$$= \vec{s} \times ((-A_u \times G^{-1}(A_v)) + (x_u \cdot x_v) \cdot G)$$

$$= \vec{s} \times ((A_u \times A_v) + (x_u \cdot x_v) \cdot G)$$

Step 4: Decryption



Cloud Storage

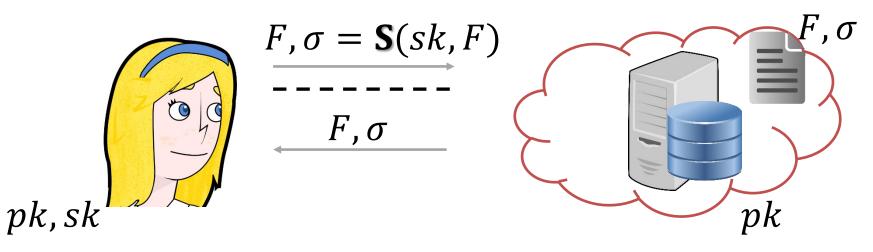


- Lots of data
- Lots of devices
- Wants to access all data at all times from all devices

- Provides greater accessibility and reliability
- Cheap price

IS SAPIENZA

Naive Protocols



- Run audit protocol
- Above protocol is too costly
 - No reason to download all data to run an audit
- What about just checking a hash of the file?

Wish List

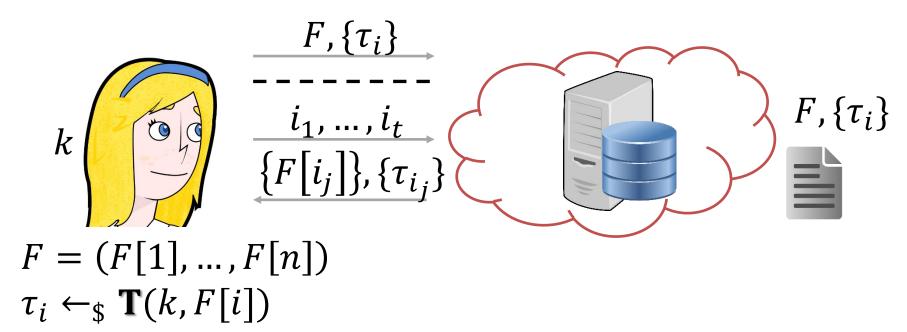
System criteria

- Low communication complexity
- Locality and small storage overhead
- Stateless protocol

<u>Crypto criteria</u>

- Only an adversary actually storing the file can pass an audit
- Possible to extract the file via black-box access
- Similar to the concept of proof of knowledge

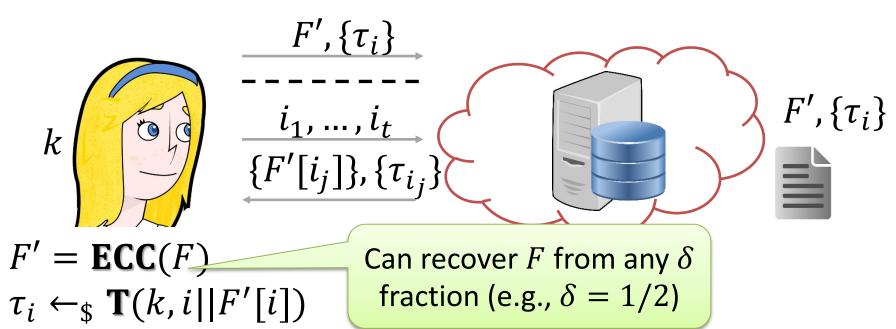
Basic Idea



- But server can still forget o(1) fraction of blocks and pass audit with good probability
 - $\Pr[\text{detect 1-in-}10^6 \text{ erasures}] < 0.01\%$

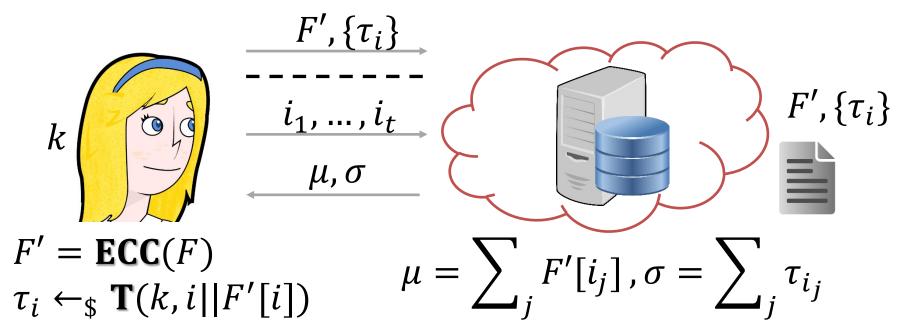
- Pr[detect 50% erasures]: $1 - (1/2)^t$

Proofs of Retrievability



- If cloud **forgets** $\leq (1 \delta)$ -fraction, can still **reconstruct** *F*
- If cloud forgets > (1δ) -fraction, will pass an audit w.p. $\leq \delta^t$

Reducing Communication Complexity



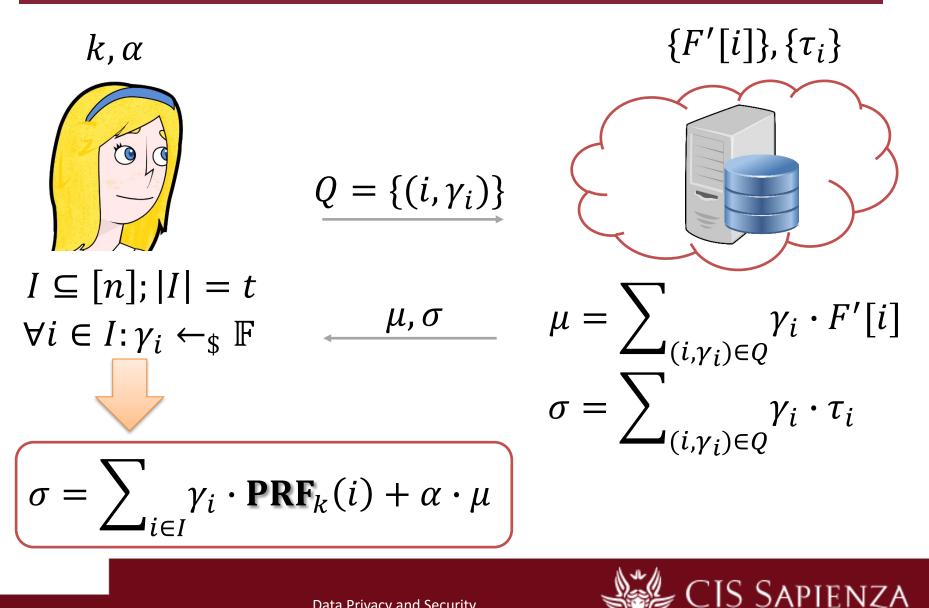
- Assume the blocks and the tags are element of some finite field ${\mathbb F}$
 - So addition is well defined
- But how can Alice verify?

Homomorphic Authenticators

- Let $\mathbf{PRF}_k: \{0,1\}^* \to \mathbb{F}; F[i] \in \mathbb{F}; \mathbb{F} = GF(2^{80})$
- Key: Single PRF key k and random $\alpha \in \mathbb{F}$
- **Tag:** Compute $\tau_i = \mathbf{PRF}_k(i) + \alpha \cdot F[i]$
- <u>Aggregate:</u> $\sigma = \sum_{i} \gamma_{i} \cdot \tau_{i}; \mu = \sum_{i} \gamma_{i} \cdot F[i]$
- Verify:

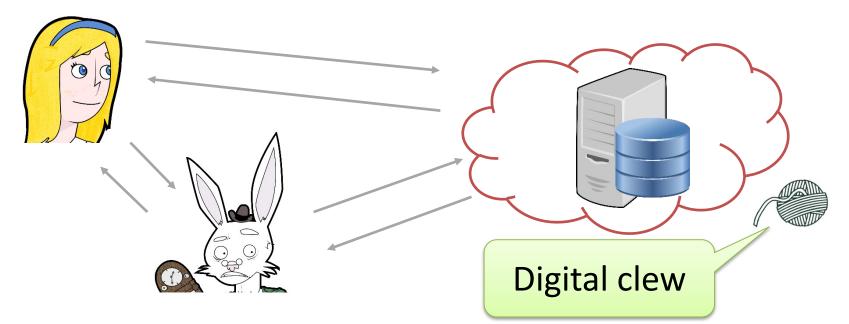
$$\sigma = \sum_{i} \gamma_i \cdot \mathbf{PRF}_k(i) + \alpha \cdot \mu$$

Compact Proofs of Retrievability



RESEA

Data Entanglement



- Peer-to-peer approach
- <u>All-or-nothing integrity</u>: If cloud forgets a significant amount of information, nobody will be able to recover its file

