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CHAPTER 4: 
Big Data & Cloud
Cryptography
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BIG DATA
• Utility + privacy
• Restrict access
• Restrict computation

Financial, medical, 
customers, 
employees



collusions

Functional Encryption (FE)
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Medical records
– Data 𝑚

𝑓!(𝑚)

𝑓"(𝑚)

𝑓#(𝑚)

𝑓!

𝑓"

𝑓#



Dating and Big Data
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Want to limit
access to my

profile
profile

(tall ˄ dark ˄ handsome)
˅ (phd ˄ cs)

Access policy



collusions

Attribute-Based Encryption (ABE)
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𝑚

phd ˄ cs

𝐄 𝐃

phd ˄ cs 𝑠𝑘

𝑚𝑐

Key Generation Center

𝑚𝑠𝑘
msc ˄ cs

phd ˄ eng



collusions

Mix-and-Match Attacks
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𝑀
phd ˄ cs

𝑀⊕𝑅!"#⊕𝑅$%

phd ˄ cs

msc ˄ cs

phd ˄ eng

𝑅!"#, 𝑅$%

𝑅&%$, 𝑅$%

𝑅!"#, 𝑅'()𝑅!"#, 𝑅$%
Key idea: Replace

strings 𝑅 with 
functions 𝜙(%) (allows 

for repeated use)



Results on FE and ABE
• Constructions of FE for arbitrary functions

currently requires strong assumptions
– Multi-linear maps
– Indistinguishability obfuscation

• The situation is much better for ABE
– Constructions for arbitrary policies from LWE
– Constructions for arbitrary policies using pairings
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"Cryptographers seldom sleep
well" – Silvio Micali



Outsourcing of Computation
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𝑥
𝑓(𝑥)

• Email, web search, navigation, social 
networking, …

• What about private 𝑥?

𝑓(,)



Outsourcing of Computation - Privately
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𝐄(𝑥)

𝑦
𝐃 𝑦
= 𝑓(𝑥)

WISH: Homomorphic evaluation function:
𝐂: 𝑓, 𝐄(𝑥) → 𝐄(𝑓(𝑥))

𝑓(,)



Fully Homomorphic Encryption
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𝑐 = 𝐄 𝑝𝑘, 𝑥

𝑦 = 𝐂(𝑝𝑘, 𝑓, 𝑐)

Correctness:
𝐃 𝑠𝑘, 𝑦 = 𝑓(𝑥)

𝑝𝑘, 𝑠𝑘 𝑝𝑘
𝑓(,)

Privacy:
𝐄 𝑝𝑘, 𝑥 ≈ 𝐄 𝑝𝑘, 0

FHE = Correctness ∀ efficient 𝑓 =  Correctness for universal set

• NAND
• (+,×) over a ringLevelled FHE: Bounded depth 𝑓



Trivial FHE?
• Let (𝐄, 𝐃) be any PKE scheme
• Define FHE (𝐄′, 𝐃′, 𝐂′):
– 𝐄′ identical to 𝐄
– 𝐂′ 𝑝𝑘, 𝑓, 𝑐 = (𝑓, 𝑐)
– 𝐃′ 𝑠𝑘, 𝑐 = 𝑓(𝐃 𝑐 )
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Compact FHE: ∃ global bound on 
ciphertext length and decryption time



A Paradox (And its Resolution)

• But remember that encryption is randomized!
• Output of evaluation algorithm will look as a 

fresh and random ciphertext
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𝑐! = 𝐄 𝑝𝑘, 𝑥!
𝑐" = 𝐄 𝑝𝑘, 𝑥"
𝑐# = 𝐄 𝑝𝑘, 𝑥#

𝐂 𝑝𝑘, 𝑓, 𝑐!, 𝑐", 𝑐#

𝐄 𝑝𝑘, 𝑥"

𝑓(𝑥!, 𝑥", 𝑥#) = 9𝑥" if 𝑥! = 0
𝑥# if 𝑥! = 1

AH! So 
𝑥! = 0



Eigenvectors Method (Basic Idea)
• Let 𝐶! and 𝐶" be matrixes for eigenvector 𝑠, 

and eigenvalues 𝑥!, 𝑥" (i.e., 𝑠×𝐶$ = 𝑥$ 0 𝑠)
– 𝐶! + 𝐶" has eigenvalue 𝑥! + 𝑥" w.r.t. 𝑠
– 𝐶!×𝐶" has eigenvalue 𝑥! , 𝑥" w.r.t. 𝑠

• Idea (GSW): Let 𝐶 be the ciphertext, 𝑠 be the 
secret key and 𝑥 be the plaintext (say over ℤ%)
– Useful to think of ℤ$ = [−𝑞/2, 𝑞/2)
– Homomorphism for addition/multiplication
– But insecure: Easy to compute eigenvalues
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Approximate Eigenvectors Method
• Approximate variant: 𝑠×𝐶 = 𝑥 0 𝑠 + 𝑒 ≈ 𝑥 0 𝑠
– "Decryptable" as long as 𝑒 % ≪ 𝑞

• Goal: Define homomorphic operations
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𝑠×𝐶! = 𝑥! , 𝑠 + 𝑒!
𝑒! % ≪ 𝑞

𝑠×𝐶" = 𝑥" , 𝑠 + 𝑒"
𝑒" % ≪ 𝑞

𝐶&'' = 𝐶! + 𝐶":
𝑠×(𝐶!+𝐶") = 𝑠×𝐶! + 𝑠×𝐶"

= 𝑥! , 𝑠 + 𝑒! + 𝑥" , 𝑠 + 𝑒"
= 𝑥! + 𝑥" , 𝑠 + (𝑒! + 𝑒")

Noise grows a 
little!



Approximate Eigenvectors Method
• Approximate variant: 𝑠×𝐶 = 𝑥 0 𝑠 + 𝑒 ≈ 𝑥 0 𝑠
– "Decryptable" as long as 𝑒 % ≪ 𝑞

• Goal: Define homomorphic operations
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𝑠×𝐶! = 𝑥! , 𝑠 + 𝑒!
𝑒! % ≪ 𝑞

𝑠×𝐶" = 𝑥" , 𝑠 + 𝑒"
𝑒" % ≪ 𝑞

𝐶()*+ = 𝐶!×𝐶":
𝑠×(𝐶!×𝐶") = (𝑥!, 𝑠 + 𝑒!)×𝐶"

= 𝑥! , (𝑥", 𝑠 + 𝑒") + 𝑒!×𝐶"
= 𝑥! , 𝑥" , 𝑠 + (𝑥!, 𝑒" + 𝑒!×𝐶")

Noise grows! 
Needs to be 

small!



Learning with Errors (LWE)
• Random noisy linear equations ≈ uniform
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+

=

≈ 𝑈

𝑠
𝐴

η

𝑏

𝐴

𝑏

∈ ℤ$,

∈ ℤ$-Small noise ∈ ℤ$-
η. ≤ 𝛼𝑞; 𝛼 ≪ 1

As hard as (𝑛/𝛼)-apx.of short
vectors in lattices of dim. 𝑛

Statistically far
from uniform



LWE – Rearranging Notation

• Recall: 𝑏 = 𝑠×𝐴 + η
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+

=

𝑠
𝐴

η

𝑏

∈ ℤ$,

∈ ℤ$-Small noise ∈ ℤ$-
η. ≤ 𝛼𝑞; 𝛼 ≪ 1

𝑠
−𝐴

1

𝑏

= η

New secret 𝑠 ∈ ℤ!"#$

New matrix
𝐴′ ∈ ℤ!

"#$ %&

LWE: 𝐴′ = (−𝐴||𝑏) ≈ 𝑈



PKE from LWE
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𝑠

= η

𝐴

𝐴 +𝑟 �⃗� = 𝑐/

∈ ℤ"-

𝑠
𝑐/

𝑟×η 𝑠×�⃗�+=

small noisepublic key

(𝐴, 𝐴×𝑟) looks uniform
as long as

𝑚 ≫ 𝑛 + 1 log 𝑞

encoding of message 𝑥
E.g., �⃗� = 𝑥 % ⁄𝑞 2 % (0, … , 0, −1)



PKE from LWE – Matrix Version
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𝐴 +
𝑅

𝑌 = 𝐶0

∈ ℤ"-12

𝑠 η×R 𝑠×𝑌+=

small noise

encoding of message
∈ ℤ$

(,4!)12

𝐶0



Shrinking Gadgets
• Write entries in 𝐶 using binary decomposition

• Reverse operation:
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𝐶 = 3 5
1 4 mod 8

yields
bits 𝐶 =

0 1
1 0
1 1
0 1
0 0
1 0

mod 8

small entries!

226! … 2 1 0 … 0 0
0 … 0 0 226! … 2 1 ×bits 𝐶 = 𝐶

𝐺 𝐺6!(𝐶)

𝑘 1𝑁 = 𝑘 log 𝑞

𝑘

⇒ 𝑠×𝐶 = 𝑠×𝐺×𝐺*+(𝐶)



The GSW Scheme
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𝑠

= η

𝐴

public key

𝐃 𝑠, 𝐶 = 𝑠×𝐶×𝐺6! − 𝑞/2 , 𝑢,4!
= 𝑒×𝐺6! ⋯ + 𝑥 , 𝑠×𝐺×𝐺6! − 𝑞/2 , 𝑢,4!
= 𝑒×𝐺6! ⋯ + 𝑞/2 , 𝑥

𝐄 𝐴, 𝑥; 𝑅 = 𝐴×𝑅 + 𝑥 , 𝐺
= 𝐶<1=

Invariant: 𝑠×𝐶 = 𝑒 + 𝑥 , 𝑠×𝐺

Output: 0 ⇔ 𝐃 𝑠, 𝐶 < 𝑞/4

∈ ℤ"&'2 = ℤ"
& ()*%

∈ ℤ$,1-
𝑒 % = η×𝑅 % ≤ 𝑛 , 𝑚



The GSW Scheme – Homomorphism
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𝑠×𝐶!×𝐺6! 𝐶" = (𝑒! + 𝑥! , 𝑠×𝐺) , 𝐺6!(𝐶")
= 𝑒!×𝐺6! 𝐶" + 𝑥! , 𝑠×𝐺×𝐺6! 𝐶"
= 𝑒!×𝐺6! 𝐶" + 𝑥! , 𝑠×𝐶"
= 𝑒!×𝐺6! 𝐶" + 𝑥! , 𝑒" + 𝑥" , 𝑠×𝐺
= 𝑒!×𝐺6! 𝐶" + 𝑥! , 𝑒" + 𝑥!𝑥" , 𝑠×𝐺
= 𝑒()*+ + 𝑥!𝑥" , 𝑠×𝐺

Invariant: 𝑠×𝐶 = 𝑒 + 𝑥 , 𝑠×𝐺

𝐶()*+ = 𝐶!×𝐺6!(𝐶")

𝑒&,-. / ≤ 𝑁 1 𝑒+ / + 𝑒0 / ≤ (𝑁 + 1) 1 max{ 𝑒+ , 𝑒0 }



Homomorphic Circuit Evaluation
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𝑒>?

𝑒@)+

𝑒+, - ≤ 𝑚 0 𝑛 = 𝑚 0 𝛼𝑞

𝑒+.! - ≤ (𝑁+ 1) 𝑒+ -

𝑒)/0 - ≤ (𝑁 + 1)1.!𝑚 0 𝛼𝑞

Decryptability:
𝑛 % 𝑚 % (𝑁 + 1)'#$ < 𝑞/4

Security: 𝑚 ≥ 1 + 2𝑛(2 + log𝑞)
and 𝑞 ≤ 2"! (𝜖 < 1)
⇒ 𝑛( > 2𝑑 % log𝑛

De
pt

h 
𝑑



Bootstrapping
• Given scheme with bounded homomorphism

up to 𝑑2)3, can we extend its homomorphic 
capability?

• Idea: Do a few operations, then switch key
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𝑝𝑘!, 𝑠𝑘!

𝑝𝑘", 𝑠𝑘"

𝑝𝑘#, 𝑠𝑘#

Switch keys



How to Switch Keys
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𝐃 𝑠𝑘,%

𝑐

𝑥

𝐃 %, 𝑐

𝑠𝑘

𝑥

≡ ℎA(,)

Decryption circuit Dual view

𝐂BC! ℎA , 𝑎𝑢𝑥 = 𝐂BC! ℎA , 𝐄BC! 𝑠𝑘
= 𝐄BC! ℎA(𝑠𝑘)
= 𝐄BC! 𝑥



Bootstrapping Theorem
• Homomorphic capacity of output: 𝑑2)3 −
𝑑41 = 𝑑2)3 − 𝑑567
– Bootstrapping if 𝑑DE- ≥ 𝑑FGA + 1
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𝑝𝑘!, 𝑠𝑘!

𝑝𝑘", 𝑠𝑘"

𝑝𝑘#, 𝑠𝑘#

Switch keys

𝑎𝑢𝑥)→+ = 𝐄,-"(𝑠𝑘))

𝑎𝑢𝑥$→) = 𝐄,-#(𝑠𝑘$)



Bootstrapping – Circular Security
• Drawback: Need to generate many keys!
• Alternative: Assume circular security
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𝑝𝑘, 𝑠𝑘

𝑝𝑘, 𝑠𝑘

𝑝𝑘, 𝑠𝑘

Refresh

𝑎𝑢𝑥 = 𝐄23(𝑠𝑘)



What about Correctness?

• How to verify correctness of the computation?
– Without re-computing the function from scratch

• Important also from the Cloud’s perspective
– Encourage cloud adoption & shed liability

Big Data & Cloud
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𝑥
𝑦

𝑓(,)

𝑦 =? 𝑓(𝑥)



Verifiable Computing
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𝑥
𝑦, 𝜋/HI(<)

𝑓, 𝑒𝑘I

𝑒𝑘I , 𝑣𝑘I ←$ 𝐆 𝑓
𝐕 𝑣𝑘I , 𝑥, 𝑦, 𝜋 ∈ {0,1}

𝑦 = 𝑓 𝑥
𝜋/ ←$ 𝐏 𝑒𝑘I , 𝑥, 𝑦

Efficiency: Alice’s effort
much less than the effort

to compute 𝑓

Soundness: No malicious
server can cause Alice to 

accept 𝑦′ ≠ 𝑓(𝑥)



Verifiable Computing from ABE (1/3)
• Assume an ABE supporting policies ℱ
– Suffices to take 𝑓 ∈ ℱ to be a formula
– We will need ℱ to be closed under complement
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𝑐 ←$ 𝐄 𝑚𝑝𝑘, 𝑥,𝑚

𝑑

𝑓,𝑚𝑝𝑘, 𝑒𝑘I = 𝑠𝑘I

𝑓,𝑚𝑝𝑘, 𝑣𝑘I = 𝑚 𝐃 𝑚𝑝𝑘, 𝑠𝑘I , 𝑐 = 𝑑

Encryption of random 
𝑚 under attribute 𝑥

If 𝑑 = 𝑚 conclude 
that 𝑓 𝑥 = 1



Verifiable Computing from ABE (2/3)
• The above protocol is a VC scheme for 

checking that 𝑓 𝑥 = 1
– If Alice receives 𝑚 she is convinced with no doubt 

that 𝑓 𝑥 = 1 (except with negligible probability)
– If Alice receives 𝑑 ≠ 𝑚, we can't conclude that 
𝑓 𝑥 = 0 (as the server could just refuse to 
answer)

– Hence, the server can cheat only if 𝑓 𝑥 = 1
• Idea: Repeat the protocol twice, for 𝑓 ∈ ℱ

and for its negation ̅𝑓 ∈ ℱ

Big Data & Cloud
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Verifiable Computing from ABE (3/3)

• For functions with multi-bit output, repeat
the above for each function 𝑓$, where 𝑓$(𝑥)
outputs the 𝑖th bit of 𝑓(𝑥)

Big Data & Cloud
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̅𝑐 ←$ 𝐄 𝑚𝑝𝑘, 𝑥, |𝑚

𝑑, �̅�

𝑒𝑘I = 𝑠𝑘I , 𝑠𝑘 ̅I

𝑣𝑘I = 𝑚, |𝑚
𝐃 𝑚𝑝𝑘, 𝑠𝑘I , 𝑐 = 𝑑

If 𝑑 = 𝑚, 𝑦 = 1
If �̅� = E𝑚, 𝑦 = 0
Else, 𝑦 = error

𝑐 ←$ 𝐄 𝑚𝑝𝑘, 𝑥,𝑚

𝐃 𝑚𝑝𝑘, 𝑠𝑘 ̅I , ̅𝑐 = �̅�

𝑚𝑝𝑘,𝑚𝑝𝑘𝑚𝑝𝑘,𝑚𝑝𝑘



Additional Properties
• Public delegatability
– Allow arbitrary parties to submit inputs for 

delegation
– This is true for any reasonable ABE

• Public verifiability
– Allow arbitrary parties (and not just the delegator) 

to verify the correctness of the result produced by 
the worker

– Can be achieved by publishing 𝑔(𝑚) and 𝑔( |𝑚), 
where 𝑔(,) is a OWF

Big Data & Cloud
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ABE from LWE
• It remains to construct an ABE for expressive

enough policies ℱ
• We sketch a scheme for the class ℱ of all 

Boolean circuits, based on LWE
– Let 𝑃 be the policy circuit with depth 𝑑 and 

attribute size 𝑘
– Ciphertext size will be poly(𝑘, 𝑑)
– Key size will be |𝑠𝑘L| = 𝑃 + poly(𝑘, 𝑑)

Big Data & Cloud
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Main Idea: Key Homomorphism

Big Data & Cloud
Data Privacy and Security

36

𝐄 𝑚𝑝𝑘, 𝑥,𝑚

𝐄 𝑝𝑘L , 𝑃(𝑥),𝑚

𝑠𝑘L Get 𝑚 iff 𝑃 𝑥 = 0

𝑃, 𝑥



Step 1: Transforming keys
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𝑚𝑝𝑘 = (𝐴, 𝐴!, … , 𝐴C)

𝑝𝑘L = 𝐴L ="Compute 𝑃 on 𝐴!, … , 𝐴C"

+

𝐴M 𝐴N

𝐴O = 𝐴M + 𝐴N

×

𝐴M 𝐴N

𝐴O = −𝐴M×𝐺6!(𝐴N)

LWE matrices

𝐺 = Gadget 
matrix



Step 2: Encryption
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𝑠
𝐴

+ η

𝐄 𝑚𝑝𝑘, 𝑥,𝑚
= (𝑠×𝐴 + η, 𝑠×(𝐴!+𝑥! , 𝐺)
+ η!, … , 𝑠×(𝐴C+𝑥C , 𝐺) + ηC , ℎ(𝑠) ⊕𝑚)

Hard-core bit of 
randomness 𝑠



Step 3: Transforming Ciphertexts (1/2)

Big Data & Cloud
Data Privacy and Security

39

𝐄 𝑚𝑝𝑘, 𝑥,𝑚
= (𝑠×𝐴 + η, 𝑠×(𝐴!+𝑥! , 𝐺)
+ η!, … , 𝑠×(𝐴C+𝑥C , 𝐺) + ηC)

𝐄 𝑝𝑘L , 𝑃(𝑥),𝑚
= 𝑠×𝐴 + η, 𝑠×(𝐴L+𝑃 𝑥 , 𝐺 + ηL

+

𝑐M = 𝑠×(𝐴M+𝑥M , 𝐺) 𝑐N = 𝑠×(𝐴N+𝑥N , 𝐺)

𝑐O = 𝑐M + 𝑐N = 𝑠×((𝐴M+𝐴N) + (𝑥M+𝑥N) , 𝐺)

𝑃, 𝑥



Step 3: Transforming Ciphertexts (2/2)
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𝐄 𝑚𝑝𝑘, 𝑥,𝑚
= (𝑠×𝐴 + η, 𝑠×(𝐴!+𝑥! , 𝐺)
+ η!, … , 𝑠×(𝐴C+𝑥C , 𝐺) + ηC)

×

𝑐M = 𝑠×(𝐴M+𝑥M , 𝐺) 𝑐N = 𝑠×(𝐴N+𝑥N , 𝐺)

𝑐O = −𝑐M×𝐺6! 𝐴N + 𝑥M , 𝑐N
= −𝑠×(𝐴M×𝐺6! 𝐴N + 𝑥M , 𝐴N) + 𝑥M , 𝑠×(𝐴N + 𝑥N , 𝐺)
= 𝑠×((−𝐴M×𝐺6!(𝐴N)) + (𝑥M, 𝑥N) , 𝐺)
= 𝑠×((𝐴M×𝐴N) + (𝑥M, 𝑥N) , 𝐺)



Step 4: Decryption
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𝐄 𝑚𝑝𝑘, 𝑥,𝑚
= (𝑠×𝐴 + η, 𝑠×(𝐴!+𝑥! , 𝐺)
+ η!, … , 𝑠×(𝐴C+𝑥C , 𝐺) + ηC)

𝐄 𝑝𝑘L , 𝑃(𝑥),𝑚
= 𝑠×𝐴||𝐴L + 𝑃 𝑥 , 𝐺 + η + ηL

𝑃, 𝑥
The secret key 𝑠𝑘. is a trapdoor
for 𝐴||𝐴. (it allows to compute 𝑠

and thus 𝑚)



Cloud Storage

• Lots of data 
• Lots of devices
• Wants to access all

data at all times
from all devices
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• Provides greater
accessibility and 
reliability

• Cheap price



Naive Protocols
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𝑝𝑘, 𝑠𝑘 𝑝𝑘

𝐹, 𝜎 = 𝐒(𝑠𝑘, 𝐹)

𝐹, 𝜎

• Run audit protocol
• Above protocol is too costly
– No reason to download all data to run an audit

• What about just checking a hash of the file?

𝐹, 𝜎



Wish List
• System criteria
– Low communication complexity
– Locality and small storage overhead
– Stateless protocol

• Crypto criteria
– Only an adversary actually storing the file can 

pass an audit
– Possible to extract the file via black-box access
– Similar to the concept of proof of knowledge

Big Data & Cloud
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Basic Idea
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𝑘

𝐹, {𝜏.}

𝐹 𝑖P , {𝜏."}

• But server can still forget 𝑜(1) fraction of 
blocks and pass audit with good probability
– Pr[detect 1-in-10Q erasures] < 0.01%
– Pr[detect 50% erasures]: 1 − (1/2)R

𝐹 = 𝐹 1 ,… , 𝐹 𝑛
𝜏. ←$ 𝐓(𝑘, 𝐹[𝑖])

𝑖!, … , 𝑖R 𝐹, {𝜏.}



Proofs of Retrievability
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𝑘

𝐹′, {𝜏.}

{𝐹′[𝑖P]}, {𝜏."}

• If cloud forgets ≤ (1 − 𝛿)-fraction, can still
reconstruct 𝐹

• If cloud forgets > (1 − 𝛿)-fraction, will pass
an audit w.p. ≤ 𝛿8

𝐹′ = 𝐄𝐂𝐂(𝐹)
𝜏. ←$ 𝐓(𝑘, 𝑖||𝐹S[𝑖])

𝑖!, … , 𝑖R 𝐹′, {𝜏.}

Can recover 𝐹 from any 𝛿
fraction (e.g., 𝛿 = 1/2)



Reducing Communication Complexity
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𝑘

𝐹′, {𝜏.}

𝜇, 𝜎

• Assume the blocks and the tags are element
of some finite field 𝔽
– So addition is well defined

• But how can Alice verify?

𝐹′ = 𝐄𝐂𝐂(𝐹)
𝜏. ←$ 𝐓(𝑘, 𝑖||𝐹S[𝑖])

𝑖!, … , 𝑖R 𝐹′, {𝜏.}

𝜇 =�
P
𝐹′[𝑖P] , 𝜎 =�

P
𝜏."



Homomorphic Authenticators
• Let 𝐏𝐑𝐅9: {0,1}∗→ 𝔽; 𝐹 𝑖 ∈ 𝔽; 𝔽 = 𝐺𝐹(2;<)
• Key: Single PRF key 𝑘 and random 𝛼 ∈ 𝔽
• Tag: Compute 𝜏$ = 𝐏𝐑𝐅9 𝑖 + 𝛼 0 𝐹[𝑖]
• Aggregate:

𝜎 =[
$
𝛾$ 0 𝜏$ ; 𝜇 =[

$
𝛾$ 0 𝐹[𝑖]

• Verify:

𝜎 =[
$
𝛾$ 0 𝐏𝐑𝐅9 𝑖 + 𝛼 0 𝜇
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Compact Proofs of Retrievability
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𝑘, 𝛼

𝜇, 𝜎

𝑄 = {(𝑖, 𝛾.)}

{𝐹S[𝑖]}, {𝜏.}

𝜎 =�
(.,U#)∈W

𝛾. , 𝜏.

𝜇 =�
(.,U#)∈W

𝛾. , 𝐹S[𝑖]
𝐼 ⊆ 𝑛 ; 𝐼 = 𝑡
∀𝑖 ∈ 𝐼: 𝛾. ←$ 𝔽

𝜎 =�
.∈X
𝛾. , 𝐏𝐑𝐅C 𝑖 + 𝛼 , 𝜇



Data Entanglement

• Peer-to-peer approach
• All-or-nothing integrity: If cloud forgets a 

significant amount of information, nobody
will be able to recover its file
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Digital clew


